
Particle Accelerator Conference 2001
Chicago, IL, June 18-22, 2001

BNL- 68368

Session ID RPAH3 11

A PARALLEL EXTENSION OF THE UAL ENVIRONMENT *

N. Malitsky, A. Shishlo, BNL, Brookhaven, US

Abstract
The deployment of the Unified Accelerator Library

(UAL) environment on the parallel cluster is presented.
The approach is based on the Message-Passing Interface
(MPI) library and the Per1 adapter that allows one to
control and mix together the existing conventional UAL
components with the new MPI-based parallel extensions.
In the paper, we provide timing results and describe the
application of the new environment to the SNS Ring
complex beam dynamics studies, particularly, simulations
of several physical effects, such as space charge, field
errors, fringe fields, and others.

1 MOTIVATION
The high level of beam loss in future high intensity proton
accelerator complexes introduces a serious challenge for
accelerator physicists To make some realistic predictions
at 10-4 level, one has to deal with a combination of
different physical effects and dynamic processes. These
effects can be evaluated and corrected independently with
a set of general-purpose accelerator codes and specialized
programs. However, the accurate modelling of necessary
low-level beam losses requires the simultaneous
consideration of several effects in a single scenario. The
open architecture of the Unified Accelerator Libraries [l]
addresses this task. In the UAL, accelerator algorithms
are implemented as replaceable modules exchanging data
via Common Accelerator Objects (Element, Bunch,
Twiss, etc.). Thus for the Spallation Neutron Source
(SNS) Ring study, a UAL-based simulation environment
has been developed [2]. This environment includes
injections painting, field errors, misalignments, fringe
fields, and space charge effect. The space-charge effect
has the largest impact on halo growth in the SNS
accumulator ring. Then preliminary working points and
injection schemes have been determined only by the
space charge beam dynamics. For example, the working
point with the splitting of tunes by a half-unit (Qx, Qy) =
(6.3, 5.8) gave promising results based on numerical
simulations. However, adding magnet errors and
misalignments in this optimised scenario dramatically
increased beam loss to unacceptable level. After detailed
study [3], it was confirmed that such resonant behaviour
was induced by a combined effect of the space charge and
skew-quadrupole errors. The space charge depressed the
tunes and made particles trapped into the sum resonance
(Qx+Qy=12) driven by skew- quadrupole field. This study
demonstrated the importance of integrated effects. Also,
it showed performance limitation of the existing
simulation environment for complex studies and necessity
of the UAL parallel extension.

*Work performed under the auspices
of the U.S. Department of Energy.

2 SOLUTION

The original UAL environment haa been implemented
using the two-language approach (C++ and Perl). The
UAL internal infrastructure and all numerical algorithms
are implemented as compiled C+t shared libraries. The
integration of these libraries is provided via the Per1
scripts. This scheme is designed to facilitate selecting and
implementing the most appropriate accelerator
approaches and supporting task-specific requirements. We
have. also found the same architecture can be perfectly
fitted to the parallel environment based on the Message-
Passing Interface (MPI) [4].

2.1 Embarrassingly Parallel Computations

Many accelerator simulation models can be represented
by the combination of single-particle and multi-particle
approaches. The single-particle beam dynamics suggests
no communication between the separate processes and is
classified as embarrassingly parallel. For this category of
UAL applications, the MPI executables can be
represented by the original sequential Per1 scripts with
few additional lines for initialisation and finalizing of the
MPI processes (see Table 1).

Table 1: A set off Per1 commands for the embarrassingly
parallel simulation scenario.

The Per1 interface to the two MPI C functions (1 and 9
commands, Table 1) is implemented as a Per1 Short-MPI
module based on the standard Per1 XS mechanism used
for embedding all UAL C-l-+ classes. This approach not

only preserves the sequential Per1 scripts but also does not
require recompilation of existing C++ shared libraries.

2.2 Communication

Development of collective space-charge effects and
time consuming numerical algorithms (e.g. calculation of
high-order Taylor maps) on parallel computers requires
the integration of the additional communication
mechanism in serial procedures. In the UAL environment,
the parallel version of the original algorithm is
implemented as a new C++ library that can be mixed
together with other UAL sequential and/or parallel
components. It enables one to encapsulate all
communication procedures in a single place and reuse the
existing simulation environment.

In the UAL, the space charge effect is currently
developed through the ORBIT module [5]. ORBIT
implements the 2.5D approach in which the space charge
effect is modelled by the thin 2D transverse kick
multiplied by the factor proportional to the longitudinal
bunch density. The calculation of the transverse kick is
based on the Particle-In-Cell (PIC) method employing the
convolution algorithm for finding 2D forces. The flow
logic and the strategy taken to parallelize this calculation
are shown in Table 2.

Table 2: Parallel flow logic for the transverse space

According to Table 2, the serial and parallel versions for
the transverse space charge calculations are different only
in steps 3 and 5. Thus the new C+ class has been derived
Tom the original one with overriding few methods. The
data exchange between different CPU’s is provided by the
special optimised MPI function, MPI-Allreduce. All
communications occur on the C++ level keeping the Per1
API unchangeable. The user still has access to the Per1
constructor of the new class and is able to integrate it into
the previous embarrassingly parallel simulation scenario
(command 5, Table 1).

3 TIMING RESULTS
The simulation environment was deployed on the

Linux workstation cluster ,including six dual i586 CPUs
In our injection-painting scenario, the number of macro-
particles is the sum of an arithmetic progression,

Session ID RPAH3 11
(512 kBytes L2 cache, 512 MB RAM) and the 100 Mb/s
Fast Ethernet switch. The MPICH 1.2.1 library installed
under the Red Hat 7.0 Linux operating system provided
the communication between different CPU’s. For the
timing purposes, the typical SNS ring simulation scenario
can be described by the following major characteristics:

Table 3: Parameters of the SNS Ring simulation scenario.

Value 1

670
670
1000
200

128x128

ORBIT[S]
TEAPOTl-61

Parameter
Number of

Lattice elements
Space charge (SC) nodes
Injectionturns
Macro-particles injected per turn
PIC.bins

Integrator of
Space charge (SC) nodes
Lattice elements

The number of injected macro-particles is determined by
the beam loss level. According to Table 4,200 K macro-
particles have been selected as an optimal quantity that
gives the satisfactory accuracy in the l.Oe-3 - l.Oe-4
beam loss range.

Table 4: The loss level estimation for the 200 K macro-
particle scenario.

] Loss] Number of lost] Error of the loss level 1

The total time of the one-turn simulation is linearly
proportional to the number of propagated particles (see
Figure 1)

Figure 1. The parallel timing results for the one-turn
simulation for the SNS lattice.

Session ID RPAH3 11
therefore, the total time of the serial calculation can be For the considered case, the optimal number of CPUs is
presented as about 10 that corresponds to the capacity of our Linux

t serial =Z;n,j*Nf+T;B*Nt (1) cluster. Because of the dual CPU effect we employ 5
CPUs for each task. It gives us the 70% parallel efficiency

where 2, and up are parameters of the timing model, and and the calculation time decreases from 80 to 23 hours.

N, is the number of turns. For the case of parallel 5 SUMMARY
simulation the formula (1) can be rewritten to take into
account that the injected macro-particles are scattered The parallel extension of the UAL 1 .O environment has

throughout CPUs been developed using Message-Passing Interface (MPI)

Z,nhj * Nf
and deployed on the SNS Linux cluster. It gives

tll = NC,, + (‘S + cNCPIJ - ‘1 “~)~t c2)
physicists the affordable time for the SNS Ring complex
beam dynamics &l&s.

In the formula (2) we suppose that the communication 6 ACKNOWLEDGEMENT
time (NC,, -1) *z, is proportional to the number of

CPUs minus one. The parameters 2, , up, and 2, were This work could not be done without the professional

determined by the timing of the real calculations and are support of the BNL Information Technology Division

shown in the Table 5. team including R. Casella, E. Efstathiadis, E. McFadden,
and L. Slatest.

Table 5. The parameters of the formula (2) for the total
time of the calculation.

We also thank A. Fedotov, J. Smith, and J. Wei for many
useful discussions.

6, , [set]
0.0024

zB
,Wl

18.7

7 c ,IW
2.8

7 REFERENCES
- Accelerator [l] N.Malitsky and R.Talman. Unified

Libraries, AIP 391 (1996)
[2] N.Malitsky et al. UAL-Based Simulation Environment

me formula (2) predicts the t0k-d Circulation he with
for Spallation Neutron Source Ring, PAC 99, 1999.

accuracy about 5-10%. In addition, it enables us to
p] A.Fedotov, NOM&&y, and J.Wei. Space-Charge

determine the optimal number of CPUs
Simulations for the Spallation Neutron Source (SNS)
Ring Using Unified Accelerator Libraries, BNWSNS

N“Pt _
z, -nhj

CPU -
i

-‘N,
=c

and the parallel efficiency

t serial
qll =

tll * NC,”

086,200l
(3) [4] B.Wilkinson and M.Allen. Parallel Programming.

Prentice Hall, 1999.
[5] J.Galambos et al. ORBIT - A Ring Injection Code

with Space Charge, PAC 99, 1999.
[6] L.Schchinger and R.Talman. TEAPOT: A Thin-

Element Accelerator Program for Optics and
(4) Tracking, Particle Accelerators, 22,35(1987).

